1,417 research outputs found

    l-Lactate generates hydrogen peroxide in purified rat liver mitochondria due to the putative l-lactate oxidase localized in the intermembrane space

    Get PDF
    AbstractIn order to ascertain whether and how mitochondria can produce hydrogen peroxide (H2O2) as a result of l-lactate addition, we monitored H2O2 generation in rat liver mitochondria and in submitochondrial fractions free of peroxisomal and cytosolic contamination. We found that H2O2 is produced independently on the respiratory chain with 1:1 stoichiometry with pyruvate, due to a putative flavine-dependent l-lactate oxidase restricted to the intermembrane space. The l-lactate oxidase reaction shows a hyperbolic dependence on l-lactate concentration and is inhibited by NAD+ in a competitive manner, being the enzyme different from the l-lactate dehydrogenase isoenzymes as shown by their pH profiles

    O6-alkylguanine-DNA Alkyltransferases in Microbes Living on the Edge: From Stability to Applicability

    Get PDF
    The genome of living cells is continuously exposed to endogenous and exogenous attacks, and this is particularly amplified at high temperatures. Alkylating agents cause DNA damage, leading to mutations and cell death; for this reason, they also play a central role in chemotherapy treatments. A class of enzymes known as AGTs (alkylguanine-DNA-alkyltransferases) protects the DNA from mutations caused by alkylating agents, in particular in the recognition and repair of alkylated guanines in O6-position. The peculiar irreversible self-alkylation reaction of these enzymes triggered numerous studies, especially on the human homologue, in order to identify effective inhibitors in the fight against cancer. In modern biotechnology, engineered variants of AGTs are developed to be used as protein tags for the attachment of chemical ligands. In the last decade, research on AGTs from (hyper)thermophilic sources proved useful as a model system to clarify numerous phenomena, also common for mesophilic enzymes. This review traces recent progress in this class of thermozymes, emphasizing their usefulness in basic research and their consequent advantages for in vivo and in vitro biotechnological applications

    Default Mode Network alterations in alexithymia: An EEG power spectra and connectivity study

    Get PDF
    Recent neuroimaging studies have shown that alexithymia is characterized by functional alterations in different brain areas [e.g., posterior cingulate cortex (PCC)], during emotional/social tasks. However, only few data are available about alexithymic cortical networking features during resting state (RS). We have investigated the modifications of electroencephalographic (EEG) power spectra and EEG functional connectivity in the default mode network (DMN) in subjects with alexithymia. Eighteen subjects with alexithymia and eighteen subjects without alexithymia matched for age and gender were enrolled. EEG was recorded during 5 min of RS. EEG analyses were conducted by means of the exact Low Resolution Electric Tomography software (eLORETA). Compared to controls, alexithymic subjects showed a decrease of alpha power in the right PCC. In the connectivity analysis, compared to controls, alexithymic subjects showed a decrease of alpha connectivity between: (i) right anterior cingulate cortex and right PCC, (ii) right frontal lobe and right PCC, and (iii) right parietal lobe and right temporal lobe. Finally, mediation models showed that the association between alexithymia and EEG connectivity values was directed and was not mediated by psychopathology severity. Taken together, our results could reflect the neurophysiological substrate of some core features of alexithymia, such as the impairment in emotional awareness

    The SOD2 C47T polymorphism influences NAFLD fibrosis severity: evidence from case-control and intra-familial allele association studies.

    Get PDF
    AIMS: Non-alcoholic fatty liver disease (NAFLD) is a complex disease trait where genetic variations and environment interact to determine disease progression. The association of PNPLA3 with advanced disease has been consistently demonstrated but many other modifier genes remain unidentified. In NAFLD, increased fatty acid oxidation produces high levels of reactive oxygen species. Manganese-dependent superoxide dismutase (MnSOD), encoded by the SOD2 gene, plays an important role in protecting cells from oxidative stress. A common non-synonymous polymorphism in SOD2 (C47T; rs4880) is associated with decreased MnSOD mitochondrial targeting and activity making it a good candidate modifier of NAFLD severity. METHODS: The relevance of the SOD2 C47T polymorphism to fibrotic NAFLD was assessed by two complementary approaches: we sought preferential transmission of alleles from parents to affected children in 71 family trios and adopted a case-control approach to compare genotype frequencies in a cohort of 502 European NAFLD patients. RESULTS: In the family study, 55 families were informative. The T allele was transmitted on 47/76 (62%) possible occasions whereas the C allele was transmitted on only 29/76 (38%) occasions, p=0.038. In the case control study, the presence of advanced fibrosis (stage>1) increased with the number of T alleles, p=0.008 for trend. Multivariate analysis showed susceptibility to advanced fibrotic disease was determined by SOD2 genotype (OR 1.56 (95% CI 1.09-2.25), p=0.014), PNPLA3 genotype (p=0.041), type 2 diabetes mellitus (p=0.009) and histological severity of NASH (p=2.0×10(-16)). CONCLUSIONS: Carriage of the SOD2 C47T polymorphism is associated with more advanced fibrosis in NASH

    Selective degradation of reverse gyrase and DNA fragmentation induced by alkylating agent in the archaeon Sulfolobus solfataricus

    Get PDF
    Reverse gyrase is a peculiar DNA topoisomerase, specific of hyperthermophilic Archaea and Bacteria, which has the unique ability of introducing positive supercoiling into DNA molecules. Although the function of the enzyme has not been established directly, it has been suggested to be involved in DNA protection and repair. We show here that the enzyme is degraded after treatment of Sulfolobus solfataricus cells with the alkylating agent MMS. MMS-induced reverse gyrase degradation is highly specific, since (i) neither hydroxyurea (HU) nor puromycin have a similar effect, and (ii) topoisomerase VI and two chromatin components are not degraded. Reverse gyrase degradation does not depend on protein synthesis. Experiments in vitro show that direct exposure of cell extracts to MMS does not induce reverse gyrase degradation; instead, extracts from MMS-treated cells contain some factor(s) able to degrade the enzyme in extracts from control cells. In vitro, degradation is blocked by incubation with divalent metal chelators, suggesting that reverse gyrase is selectively degraded by a metal-dependent protease in MMS-treated cells. In addition, we find a striking concurrence of extensive genomic DNA degradation and reverse gyrase loss in MMS-treated cells. These results support the hypothesis that reverse gyrase plays an essential role in DNA thermoprotection and repair in hyperthermophilic organisms

    Pre-service teachers’ approaches to gender-nonconforming children in preschool and primary school: Clinical and educational implications

    Get PDF
    Corrective approaches taken by teachers towards gender nonconformity in childhood may increase the gender pressure that children feel, negatively affecting well-being and development. This study was aimed at assessing whether the approaches of 305 pre-service preschool and primary school teachers towards gender nonconformity in childhood are influenced by sexist and homophobic attitudes and feelings. The results indicated that the majority of the sample would adopt a supportive and affirmative approach towards gender nonconformity in childhood. Notwithstanding, the results also showed that sexism influenced the likelihood of adopting corrective approaches only to gender-nonconforming primary school children, whilst homophobia was positively associated with adoption of a corrective approach to gender nonconformity in both preschool and primary school children. Suggestions for educational and clinical practice are discussed

    The DNA Alkylguanine DNA Alkyltransferase-2 (AGT-2) Of Caenorhabditis Elegans Is Involved In Meiosis And Early Development Under Physiological Conditions

    Get PDF
    DNA alkylguanine DNA alkyltransferases (AGTs) are evolutionary conserved proteins that repair alkylation damage in DNA, counteracting the effects of agents inducing such lesions. Over the last years AGTs have raised considerable interest for both the peculiarity of their molecular mechanism and their relevance in cancer biology. AGT knock out mice show increased tumour incidence in response to alkylating agents, and over-expression of the human AGT protein in cancer cells is frequently associated with resistance to alkylating chemotherapy. While all data available point to a function of AGT proteins in the cell response to alkylation lesions, we report for the first time that one of the two AGT paralogs of the model organism C. elegans, called AGT-2, also plays unexpected roles in meiosis and early development under physiological conditions. Our data suggest a role for AGT-2 in conversion of homologous recombination intermediates into post-strand exchange products in meiosis, and show that agt-2 gene down-regulation, or treatment of animals with an AGT inhibitor results in increased number of germ cells that are incompatible with producing viable offspring and are eliminated by apoptosis. These results suggest possible functions for AGTs in cell processes distinct from repair of alkylating damage

    Functional interaction of reverse gyrase with single-strand binding protein of the archaeon Sulfolobus

    Get PDF
    Reverse gyrase is a unique hyperthermophile-specific DNA topoisomerase that induces positive supercoiling. It is a modular enzyme composed of a topoisomerase IA and a helicase domain, which cooperate in the ATP-dependent positive supercoiling reaction. Although its physiological function has not been determined, it can be hypothesized that, like the topoisomerase–helicase complexes found in every organism, reverse gyrase might participate in different DNA transactions mediated by multiprotein complexes. Here, we show that reverse gyrase activity is stimulated by the single-strand binding protein (SSB) from the archaeon Sulfolobus solfataricus. Using a combination of in vitro assays we analysed each step of the complex reverse gyrase reaction. SSB stimulates all the steps of the reaction: binding to DNA, DNA cleavage, strand passage and ligation. By co-immunoprecipitation of cell extracts we show that reverse gyrase and SSB assemble a complex in the presence of DNA, but do not make stable protein–protein interactions. In addition, SSB stimulates reverse gyrase positive supercoiling activity on DNA templates associated with the chromatin protein Sul7d. Furthermore, SSB enhances binding and cleavage of UV-irradiated substrates by reverse gyrase. The results shown here suggest that these functional interactions may have biological relevance and that the interplay of different DNA binding proteins might modulate reverse gyrase activity in DNA metabolic pathways
    corecore